

"The	Critical / Red Flag	Field Tests &	Important Considerations
Problem"	Observations	Relevant Observations	important considerations
Loose Dry	•Fan-shaped avalanches: debris fine.	•Boot / ski penetration ≥12" (30 cm). •Slope tests / cuts result in sluffs.	•Can be triggered by falling snow, cornice fall, rock fall, a brief period of sun, wind, or rider.
Snow	 Loose surface snow ≥12" (30 cm) deep. 	 Loose snow surface texture (as opposed to wind-affected, refrozen, or other stiff snow 	Sluffs can run fast and far. Small slides dangerous with terrain traps / cliffs.
		textures).	•Sluffs can trigger slabs in certain conditions.
	•Rain and / or rapid warming.	Observed and forecast temp trend.	•Timing is critical. Danger can increase quickly (minutes to
	•Air temp > 0°C for longer than 24 hours (cloud cover may	•Temps (Air, Surface, T20) / freezing level indicate near surface snow temps at 0°C.	hours). •No freeze for multiple nights worsens condition. However,
Loose Wet	prevent nighttime cooling).	Note slopes receiving / will receive intense	nighttime freeze can stabilize.
Snow	Pinwheels or roller balls.	radiation.	•Gullies and cirques receive more radiation and retain more heat than open slopes.
	 Fan shaped avalanches: debris lumpy and chunky. 	Wet snow surface: water visible between the grains with a loupe, may be able to squeeze water out with hands.	Shallow snow areas become unstable first - may slide to ground in terrain with shallower, less dense snowpack.
	•Rain on snow, especially dry	Consider Loose Wet Snow observations.	May initiate from rocks or vegetation.
	snow. •Current or recent wet slab	Observed melting snow surface (rain or strong radiation) of a slab over weak layer.	Can occur on all aspects on cloudy days / nights.
	avalanches: debris has channels / ridges, high water content, may entrain rocks and vegetation.	Tests show change in strength of weak layer due to water and / or water lubrication	Conditions may also include cornice fall, rockfall or increased icefall hazards.
Wet Slab	Prolonged warming trend,	above crust or ground layer.	
1.101.0145	especially the first melt on dry snow.	•Identify the depth at which the snow is 0°C.	•Snow temp of slab at or near 0°C.
	onom.	 Monitor liquid water content and deteriorating snow strength using hardness and penetration tests. 	Loose wet snow slides can occur just prior to wet slab activity.
		Nearby glide cracks may be widening during rapid warming.	Possible lag between melt event and wet slab activity.
	Natural avalanches in steep terrain with little or no wind.	Observe storm snow depth, accumulation rate and water equivalent.	•Rapid settlement may strengthen the snowpack, or form a slab over weak snow.
Storm	•≥12" (30cm) snowfall in last 24 hours or less with warmer heavier snow.	Observe settlement trend: settlement cones, boot / ski pen, measured change in storm snow (>25% in 24 hours is rapid).	When storm slabs exist in sheltered areas, wind slabs may be also present in exposed terrain. May strengthen and stabilize in hours or days depending
Slab	 Poor bond to old snow: slab cracks or avalanches under a rider's weight. 	•Tests show poor bond w/ underlying layer (Tilt and ski tests). ID weak layer character.	on weak layer character. •Potential for slab fracturing across terrain can be
	nuci s weight.	 Denser storm snow over less dense snow (boot / ski penetration, hand hardness). 	underestimated.
	 Recent slab avalanches below ridge top and / or on cross- loaded features. 	Evidence of wind-transported snow (drifts, plumes, cornice growth, variable snow surface penetration with cracking).	Often hard to determine where the slab lies and how unstable and dangerous the situation remains. Slope-specific observations, including watching wind
Wind Slab	Blowing snow at ridgetop combined with significant snow	Evidence of recent wind (dense surface snow or crust, snow blown off trees).	slabs form, are often the best tool. Strong winds may result in deposition lower on slopes.
	available for transport. •Blowing snow combined with	 Noderate wind speeds observed for significant duration (reports, weather 	•Commonly trigged from thin areas (edges) of slab.
	snowfall: deposition zones may accumulate 3-5x more than sheltered areas.	stations and field observations).	Wind transport and subsequent avalanching can occur days after the last snowfall.
	Bulletins / experts warn of persistent weak layer (surface foot/graph death base)	Profiles reveal a slab over a persistent weak layer.	•Instability may be localized to specific slopes (often more common on cooler N / NE aspect) and hard to forecast.
Persistent Slab	hoar, facet/crust, depth hoar). •Cracking, whumping.	Use multiple tests that will verify the location of this condition in terrain.	•Despite no natural occurrences, slopes may trigger with small loads - more likely when the weak layer is 8-36" deep (20-85cm).
Siab		Small column tests (CT, DT) indicate sudden (Q1) results; large column tests (ECT, PST, RB) show tendency for propagating cracks.	•Human triggered avalanches are still possible long after the slab was formed.
Deep Slab	•Remotely triggered slabs. •Recent and possibly large isolated avalanches observed with deep, clean crown face.	 Profiles indicate a well preserved but deep (≥1m), persistent weak layer. 	May be aspect / elevation specific - very important to track weak layer over terrain.
		Column tests may not indicate propagating cracks; DT and PST can provide more consistent results.	Slight changes, including mod. snowfall, and warming can re-activate deeper layers.
		•Heavy loads (cornice drop or explosives	May be dangerous after nearby activity has ceased. Tests with no results are not conclusive.
		test) may be needed to release the slope - large and destructive avalanches result.	Nay be remotely triggered from shallower, weaker areas.
		and a second distribution reduction	• Difficult to forecast and to manage terrain choices.
	•Recent cornice growth.	Note rate, extent, location and pattern of	Cornices often break further back onto ridge top than
Cornices	•Recent cornice fall. •Warming (solar, rain at ridge	cornice growth and erosion. Photos tracking change over time.	expected. Can underestimate sun's effect on the back of cornice when traveling on cool, shaded aspects.
	tops).		when traveling on cool, shaded aspects.